CH2MHILL。

Englishmen River Water Service Water Treatment Plant Expansion Project

Background

Today's presentation

- Results from the Phasing Options meeting
 - Re-scope project in phases to minimize impacts on water rates and development cost charges
 - Review of four phasing options
 - Selection of the best phasing option based on technical and cost criteria
 - Is a phased approach better than the pre-design option?

Water Demand and Planning Horizons

Predesign

- 24 ML/d WTP by 2016
- Design based on industry standard practices
 - A planning horizon of 20 years (up to 2035)
 - $_{\odot}~$ Water demand projections that include a 25% safety factor
 - Uncertainties in population growth
 - changes in water use
 - Impacts of climate change on irrigation
 - $\circ~$ Flexibility to expand as demand increases

Let us put water demand into context

- 2014 water demand for Parksville and Nanoose
 - Water demands are increasing
 - $_{\odot}\,$ Existing river intake capacity is limited to 12.2 ML/d
- Groundwater wells
 - Current ERWS wells have a maximum capacity of 11.8 ML/d
 - New wells outside of ERWS are being developed in the same aquifer
 - Therefore existing wells/aquifer capacity declining over time
 - $\circ~$ Need to reduce reliance on groundwater

Water Demand and Planning Horizons – Phased Approach

- Phase 1 WTP capacity of 16 ML/d (2016)
 - o Minimum capacity *without* a safety factor
 - Typically not good industry practice
- Phase 2 expansion planned for 2024 to meet the 24 ML/d demand by 2026

- As a phasing option, can the new WTP be located at the existing intake site?
 - \circ Short answer is no
 - $\circ~$ Intake has limited capacity
 - 40 year old infrastructure
 - · Capacity limited to approximately 12 ML/d
 - o Location not suitable
 - In an existing neighbourhood (limited space)
 - Downstream of urban development (risk of contamination)
 - In a floodplain

- Expand WTP in two phases
- Phase 1
 - o Meet demand
 - Meet regulatory requirements
 - Meet a budget of approximately \$20M
- Phase 2
 - Match the scope in Pre-design report
- Four options identified

Preliminary Design Report

- 24 ML/d of filtration, disinfection and corrosion control
- Transmission mains connecting to the Springwood and the Top Bridge reservoirs

Transmission Mains: PDR, Options 1, 2 and 4

Parksville System Improvements

Transmission Mains: PDR, Options 1, 2 and 4

Nanoose and Craig Bay Pump Station

Options

- All phased options require compromises
- Identified options that meet the budget and require the least compromises
- A few examples:
 - Partial treatment (disinfection only)
 - Reduced capacity (filtration only in a portion of the flow)
 - Less operational flexibility
 - $\circ~$ Limited or no use of WTP during high turbidity events in the summer
 - $\circ~$ Some infrastructure that would be abandoned in Phase 2 ~

Option 1: 16 ML/d Disinfection

- 16 ML/d of disinfection and corrosion control
- Membrane filtration deferred to Phase 2
- Phase 1 includes the WTP building including foundations and buried tanks
- Transmission mains connecting to the Springwood and the Top Bridge reservoirs

CH2MHILL

Option 1: 16 ML/d Disinfection

- Advantages
 - Phase 1 infrastructure re-usable for the future expansion
 - Improved operation of distribution system (mixing groundwater and surface water at reservoirs)
- Disadvantages
 - Does not meet IH 4.3.2.1.0
 - Operation limited to low color and turbidity days (Summer use only)
 - 1.5 years to add filtration (delivery, installation and commissioning)

Option 2: 16 ML/d Disinfection + Chemical Facility

- 16ML/d of disinfection and corrosion control
- Membrane filtration deferred to Phase 2
- Same treatment performance and capacity as Option 1
- Defers construction of WTP foundation/building except chemical storage facility

Option 2: 16 ML/d Disinfection + Chemical Facility

- Advantages
 - Phase 1 infrastructure re-usable for the future expansion (with modifications)
 - Improved operation of distribution system (mixing groundwater and surface water at reservoirs)
- Disadvantages
 - Does not meet IH 4.3.2.1.0
 - Operation limited to low color and turbidity days (Summer use only)
 - Most WTP infrastructure deferred to Phase 2
 - o 2.5 years to add filtration (tender, delivery, installation and commissioning)

What are the filtration options in Phase 1?

- Pre-design uses an engineered filtration system that is appropriate for larger facilities (economy of scale)
- Making the WTP smaller and adding the same filtration system would exceed the budget
- To meet the Phase 1 budget with filtration, need trade-offs:
 - Packaged filtration systems
 (cost effective up to 16 ML/d)
 - No high recovery
 - Slab on grade construction
- Phase 2
 - Separate WTP building
 - Engineered filtration system

Option 3: 16 ML/d Disinfection + 8 ML/d Filtration

- 16 ML/d of disinfection and corrosion control, 8 ML/d packaged filtration
- Need to defer construction of full transmission mains to offset cost of filtration

CH2MHILL

Option 3: Transmission Mains

CH2MHILL.

Option 3: 16 ML/d Disinfection + 8 ML/d Filtration

- Advantages
 - Meets all IH 4.3.2.1.0 requirements.
 - Year round operation
 - Relief to the groundwater wells during the winter
 - Quick filtration expansion to 16 ML/d (5 months)
- Disadvantages
 - Additional cost to integrate Phases 1 and 2
 - Operational complexity in distribution system (no blending)
 - Watermain route on Martindale prone to flooding, abandoned for Phase 2
 - Additional 1.5 year to implement Phase 2

CH2MHILL

Option 4: 16 ML/d Disinfection + 8 ML/d Filtration

- 16 ML/d of disinfection and corrosion control, 8ML/d packaged filtration
- All transmission mains to Springwood and Top Bridge reservoirs
- Same as Option 3 but with construction of all transmission mains

CH2MHILL.

Option 4: 16 ML/d Disinfection + 8 ML/d Filtration

- Advantages
 - Meets all IH 4.3.2.1.0 requirements
 - Year round operation
 - Relief to the groundwater wells during the winter
 - Quick filtration expansion to 16 ML/d
 - Flexibility to provide consistent blended water (filtration & direct connection to reservoirs)
- Disadvantages
 - Additional cost to integrate Phases 1 and 2
 - Additional 1.5 year to implement Phase 2

Treatment Provided

Process	PDR	Option 1	Option 2	Option 3	Option 4
Vortex Sand Separators	\checkmark	×	×	\checkmark	\checkmark
Fine Strainers	\checkmark	\checkmark	×	\checkmark	\checkmark
Coagulation	\checkmark	×	×	\checkmark	\checkmark
Membranes – UF or MF	\checkmark	×	×	\checkmark	\checkmark
UV Disinfection	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Chlorination	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Corrosion Control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Residuals	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Evaluation of Options

Evaluation Criteria and Weighting

Primary Criteria	Secondary Criteria
Water Quality	 Compatibility with IH 4.3.2.1.0 and disinfection by product requirements Consistent aesthetics
Technical Considerations	 Ease of operation of distribution system Performance reliability Flexibility for interim expansion Compatibility with site Shift dependence from ground water to surface water
Social Considerations	 Relative risk and impact of requiring boiled water advisory or water restrictions Impacts to resident by phasing construction of water transmission mains
Natural Environmental Considerations	 All options deemed equal in this category
Economic Considerations	Captured in capital cost estimates

Evaluation Criteria and Weighting

CH2MHILL.

Technical Scoring

	Option 1 16 ML/d Disinfection	Option 2 16 ML/d Disinfection + Chem. Facility	Option 3 16 ML/d Disinfection + 8 ML/d Fltr.	Option 4 16 ML/d Disinfection + 8 ML/d Fltr.
Raw Score	35	25	57	75
Weighted Score	3.0	2.3	7.3	8.6
Rank by Weighted Score	3	4	2	1

Capital Cost Estimate

	PDR	Option 1	Option 2	Option 3	Option 4
Total – 2016	\$35.16 M	\$25.16 M	\$21.59 M	\$23.11 M	\$24.32 M
Total – 2018/2024	\$1.83 M	\$14.00 M	\$17.66 M	\$17.62 M	\$16.41 M
Total Capital Cost	\$36.98 M	\$39.17 M	\$39.25 M	\$40.73 M	\$40.74 M

Best Value Option

- Benefits and costs compared:
 - Total costs Phase 1 and 2
 - o Cost per point
 - Option 4: best value

CH2MHILL

Recommendation

- For a phased option to be more financially attractive than the PDR
 - Lower capital cost, and/or
 - Phase 2 be implemented in 20 years or later
- Analysis indicates
 - Phased options have a lower cost for Phase 1 compared to the PDR
 - Phase options have a higher overall project cost compared to the PDR
 - Phase 2 expansion must start within 8 years to meet 2026 water demands (no safety factor)
- Proceed with design outlined in the Pre-Design Report (PDR)

